

Hydrocarbon production characterization during huff-n-puff EOR using NMR and Hawk[®] pyrolysis.

Sidi Mamoudou

Mewbourne School of Petroleum and Geological Engineering University of Oklahoma November 14th 2019

Introduction

- *IC* ³

EOG resources

EOG first company to achieve field scale EOR success in an unconventional play Additional recovery from 32 wells (30-70%) improvement

- Evaluate the effect of the type of solvent on EOR Huff-n-Puff.
- Provide EOR candidate selection using NMR and HAWK [®] dry Pyrolysis.

Sample description

Sample	Total Porosity (%)	TOC (wt.%)	Total Clays (wt.%)	Total Carbonates (wt.%)	Quartz+Feldspar (wt.%)	Others
Eagle Ford	5.1	4.9	16	62	13	8

Sample received in preserved state.

Crushed sample (7-8mm)

Huff-n-Puff experimental apparatus

MMP studies

IC ³

MMP is the pressure at which the interfacial tension between a gas and fluid disappear. (Rao et al,2000)

Window

Sight feed indicator

Hawthorne et al, 2014

Capillary tubes

Minimum Miscibility Pressure –Vanishing Interfacial Tension 🕡 The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

T= 150 ° F

Minimum Miscibility Pressure –Vanishing Interfacial Tension 🕡 The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

150^o F

NMR responses during Huff-n-Puff

T=150 °F Injection Pressure = +1000psi above MMP Mixture C1:C2 (72:28) 1 hour soaking 1 hour production 22-25 grams

> 12MHz NMR τ =57 μs SNR>100

NMR responses during Huff-n-Puff

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering

T=150 °F Injection Pressure = +1000psi above MMP Mixture C1:C2 (72:28) 1 hour soaking 1 hour production 22-25 grams

Maximum recovery of 45% after 12 cycles.

NMR T1-T2 fluid characterization after Huff-n-Puff

Mostly hydrocarbon is produced during the huff-n-puff.

- IC³

12MHz NMR τ =57 μs

11

HAWK [®] dry pyrolysis-HC species characterization.

Peak	S ₁₁	S ₁₂	S ₁₃	S ₁₄
Temperature Step, °C	100-150	150-200	200-250	250-300
HCs cutoff	< C ₁₃	C ₉ -C ₁₇	C ₁₃ -C ₂₄	C ₁₇ -C ₂₇

Abrams et al., 2017

HAWK [®] dry pyrolysis- After Huff-n-Puff

HCs up to C_{24} (S_{11} , S_{12} and S_{13}) were produced, but dominated by components lighter than C_{17} (S_{11} and S_{12} .)

Impact of solvent type on Huff-n-Puff

IC³

T=150 °F Injection pressure = +1000 psi above MMP 1 hour soaking 1 hour production

Performance in recovery efficiency at the same test configuration:

Eagle Ford

Crushed sample size: 7-8mm

Ethane > CO2 > C1:C2(72:28) ~ Field gas(C1:C2:C3+/76:14:10) > C1:C2(95:5)

Impact of solvent type on Huff-n-Puff

T=150 °F Injection Pressure = +1000psi above MMP 1 hour soaking 1 hour production 22-25 grams

Eagle Ford

Ethane is found to be more efficient in removing heavier HCs (up to C₂₇), compared to other gases.

Impact of solvent type on Huff-n-Puff

The UNIVERSITY of OKLAHOMA

Mewbourne School of Petroleum and Geological Engineering

- *IC* ³

12MHz NMR τ =57 μs

Summary

- NMR results show that removable HC fractions come from both fast and slow relaxation regions (correspondingly small and large pores).
- Ethane was found to be more effective in mobilizing heavier HCs, up to C_{27} ; while CO_2 and a mixture of methane: ethane (72:28 mol%) can only mobilize HCs up C_{17} .
- The results also show that CO₂ is more efficient at removing water compared to HC solvents.
- It is more beneficial to use enriched injectate from the beginning of the huff-n-puff operation, instead of progressively enriching the gas during EOR.

Questions ?

Acknowlegments

Advisors:

- Dr. Carl Sondergeld
- Dr. Chandra Rai

Mentors:

- Dr. Ali Tinni
- Son Thai Dang

Others:

- Micaela Langevin
- Gary Stowe

Sponsors:

- Unconventional Shale Gas consortium members
- Encana

References

Abrams, M. A., Gong, C., Garnier, C., and Stephenson, M. A. 2017. A new thermal extraction protocol to evaluate liquid rich unconventional oil in place and in-situ fluid chemistry. *Journal of Marine and Petroleum Geology* 88: 659-675.<u>https://dx.doi.org/10.1016/j.marpetgeo.2017.09.014</u>.

Hawthorne, S.B., Miller, D.J., Gorecki, C.D., Sorenson, J.A., Hamling, J., Roen, T.D., Harju, J.A., Melzer, L.S. A rapid method for determining CO2/oil MMP and visual observations of CO2/oil interaction at reservoir condition. Energy & Environmental Research Center, North Dakota, USA, 2014

Rao, D.N and Lee, J.I, Miscibility Evaluation for Terra Nova Offshore Field. 2000. Petroleum society of Canada. Paper 2000-82.

